

Do policy-makers dream of Electric Data ?

Or musings on the application of AI to STI policy

Alasdair Reid

14 December 2023

Bow can AI be applied to science, technology and innovation policy ?

1. Data-driven Decision Making:

- 1. Analysis of Research Trends: Al can analyse vast amounts of scientific literature, patents, and research data to identify emerging trends in various scientific and technological domains, helping policymakers make informed decisions.
- **2. Funding Allocation:** Al can assist in optimizing the allocation of research funding by identifying areas with high potential for innovation and societal impact.

2. Technology Forecasting and Road mapping:

- 1. **Predictive Modelling:** Al can predict the future development of technologies and their potential impact on society, aiding in the creation of long-term technology roadmaps.
- **2.** Identification of Emerging Technologies: Al can scan the technological landscape to identify emerging technologies that may warrant policy attention and support.

3. Innovation Ecosystem Analysis:

- 1. Start-up Ecosystem Support: Al can analyse start-up ecosystems, identifying areas with high innovation potential and suggesting policies to support entrepreneurship and innovation.
- 2. **Collaboration Opportunities:** Al can identify opportunities for collaboration between academia, industry, and government agencies to foster innovation.

4. Intellectual Property Management:

- **1. Patent Analysis:** Al can analyse patent databases to identify technological trends, potential areas of conflict, and opportunities for collaboration.
- **2. IP Policy Optimization:** Al can assist in the development of intellectual property policies that balance the need for innovation with fair competition.
- 5. Science and Technology Diplomacy:
 - 1. Global Collaboration Opportunities: Al can analyse global scientific collaborations and help identify opportunities for international partnerships in research and innovation.
 - 2. Policy Harmonization: AI can assist in comparing and harmonizing STI policies across different regions to facilitate global cooperation

- 6. Research Prioritisation and Portfolio Management:
 - **1. Optimising Research Portfolios:** Al can help policymakers prioritize research areas based on societal needs, economic impact, and scientific potential.
 - **2.** Identifying Gaps and Redundancies: Al can analyse research portfolios to identify gaps and redundancies, ensuring a more efficient allocation of resources.

7. Ethical Considerations in Research and Development:

- **1. Ethical AI in Research:** AI can be used to assess and ensure ethical considerations in research and development, helping policymakers address ethical challenges associated with emerging technologies.
- **2. Public Engagement:** Al can facilitate public engagement and feedback mechanisms to incorporate societal values into STI policies.

8. Technology Transfer and Commercialization:

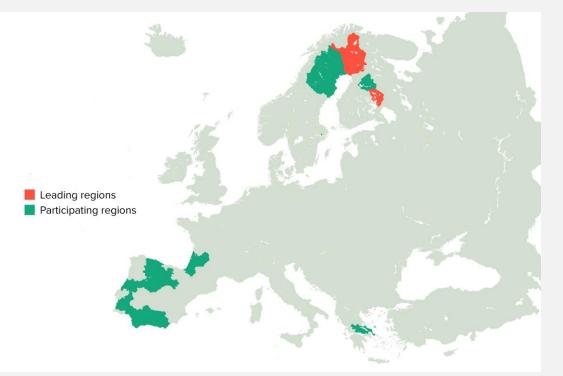
- **1. Market Analysis:** Al can analyse market trends and potential commercialization opportunities for research outcomes, guiding policies that facilitate technology transfer.
- 2. Licensing and Regulation: Al can assist in developing policies for licensing and regulating the commercialization of innovative technologies.

9. Monitoring and Evaluation:

- **1. Impact Assessment:** Al can be used to assess the impact of STI policies, providing policymakers with data-driven insights for continuous improvement.
- 2. **Real-time Monitoring:** Al can enable real-time monitoring of the implementation of STI policies, allowing for timely adjustments as needed.

10. Education and Skill Development:

- 1. **Identifying Skill Gaps:** Al can analyse the evolving skill requirements in the technology sector, assisting policymakers in designing education and training programmes that align with industry needs.
- **2. Personalised Learning:** Al can enhance educational approaches, providing personalised learning experiences to nurture the next generation of scientists and innovators.

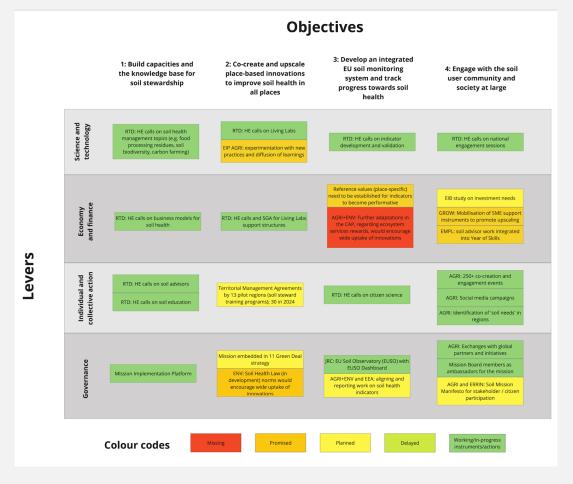

Challenge 1 – fix data availability for the Regional Innovation Scoreboard

Framework conc	ditions	Innovation activiti	es
Human Resources	1.1.1 New doctorate graduates (ISCED 6) per 1000 population aged 25-34	Innovators	3.1.1 SMEs introducing product innovations (% of SMEs)
	1.1.2 Percentage of population aged 25-34 having completed tertiary education		3.1.2 SMEs introducing business process innovations (percentage of SMEs)
	1.1.3 Percentage population aged 25-64 participating in lifelong learning		3.2.1 Innovative SMEs collaborating with others (% of SMEs)
Attractive research	1.2.1 International scientific co-publications per million population	Linkages & entrepreneurship	3.2.2 Public-private co-publications per million population
	1.2.2 Scientific publications among top 10% most cited publications worldwide as % of total scientific publications of the country		3.2.3 Job-to-job mobility of Human Resources in Science & Technology
	1.2.3 Foreign doctorate students as a percentage of all doctorate students	Intellectual Assets	3.3.1 PCT patent applications per billion GDP (in PPS)
Digitalisation	1.3.1 Broadband penetration		3.3.2 Trademark applications per billion GDP (in PPS)
	1.3.2 Individuals who have above basic overall digital skills (% share)		3.3.3 Design applications per billion GDP (in PPS)
investment		Impacts	
Finance and support	2.1.1 R&D expenditure in the public sector (% of GDP)	Employment impacts	4.1.1 Employment in knowledge-intensive activities
	2.1.2 Venture capital expenditures (% of GDP)		4.1.2 Employment in innovative enterprises
	2.1.3 Direct government funding and government tax support for business R&D	Sales impacts	4.2.1 Exports of medium and high techn products as a share of total product exports
Firm investments	2.2.1 R&D expenditure in the business sector (% of GDP)		4.2.2 Knowledge-intensive services exports as % of total services exports
	2.2.2 Non-R&D innovation expenditures (% of turnover)		4.2.3 Sales of new-to-market and new-to-enterprise innovations
	2.2.3 Innovation expenditures per person employed	Environmental sustainability	4.3.1 Resource productivity
Use of information technologies	2.3.1 Enterprises providing training to develop or upgrade ICT skills of their personnel		4.3.2 Air emissions by fine particulate matter (PM2.5) in Industry

EIS indicators not included within the RIS Framework

Challenge 2 – identify complementarities across interregional innovation ecosystems

- Thematic smart specialisation partnerships seek to identify and then activate complementary expertise and resources in specific STI fields (leading to I3 and EIE/Regional innovation valleys);
- Currently the mapping of potential synergies is a 'manual' exercise (survey, workshops, data/document review, etc.),
- Can AI tools be used to map deeper and broader potential for cooperation and joint investment to foster inter-regional value chains and innovation networks ?


S3P Mining Industry and Global Value Chain

Leading regions: Lapland (FI), North Karelia (FI)

Participating regions: Kainuu (FI), Bergslagen (SE), Västerbotten (SE), Norrbotten (SE), Castilla y Leon (ES), Andalusia (ES), Asturias (ES), Alentejo (PT), Centro Portugal (PT), Sterea Ellada (GR), Nouvelle-Aquitaine (FR)

Challenge 3 – map networks of actors and portfolios of projects contributing to EU missions

- EU Missions are multi-level initiatives implying the need to identify relevant (quadruple helix) stakeholders at the EU level (already complex) but also the national, regional and local levels.
 - Al could help both identify and map (sub-) networks of actors and provide tools for match-making and partnership building.
- Tracking the portfolio of actions, investments and funding instruments at all these levels is hugely time consuming and assessing their contribution to the mission theory of change even more so.
 - How can AI tools be applied to support the management of EU missions ?

Thank you

www.efisecentre.eu

reid@efiscentre.eu

https://www.linkedin.com/company/european -future-information-efis-centre/

Alasdair Reid Executive Director reid@efiscentre.eu